
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
06-03-2012

2. REPORT TYPE
PhD Thesis Chapter

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

Chapter 7 of PhD Thesis – “Multiscale Modeling of Hall Thrusters” 5b. GRANT NUMBER
 5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

Lubos Brieda

 5f. WORK UNIT NUMBER
33SP0853

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Research Laboratory (AFMC)
AFRL/RZSS
1 Ara Road
Edwards AFB CA 93524-7013

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S
ACRONYM(S)

Air Force Research Laboratory (AFMC)
AFRL/RZS 11. SPONSOR/MONITOR’S
5 Pollux Drive

 NUMBER(S)
Edwards AFB CA 93524-7048 AFRL-RZ-ED-TP-2012-062

 12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited (PA #12134).

 13. SUPPLEMENTARY NOTES
For presentation at George Washington University, Washington, D.C.

14. ABSTRACT

The final component of a multiscale modeling approach to Hall thrusters addresses the expansion of the plasma plume..

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON
Justin W. Koo, Ph.D.

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

SAR

23

19b. TELEPHONE NUMBER
(include area code)
N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. 239.18

Lubos Brieda

CHAPTER VII

Plume Modeling

7.1 Introduction

The final component of our multiscale approach addresses the expansion of the

plasma plume. Outside the thruster, the magnetic field strength decays rapidly and

the plume dynamics is dominated by the electrostatic Lorentz force, ~F = q ~E. How-

ever, an important factor in the plume is collisional interaction between particles. Of

particular importance is the so-called charge exchange reaction (CEX). The resonant

charge exchange occurs when an ion and neutral of the same parent species come into

a close contact to exchange an electron without a significant momentum or energy

transfer. Since the velocity of neutrals is much smaller (∼ 1 km/s thermal velocity)

than the velocity of the ions (∼ 17 km/s), this interaction

Xe◦slow +Xe+fast → Xe+slow +Xe◦fast (7.1)

results in the creation of slow ions and fast neutrals.

The thruster plume always contains a radial ∆φ component due to the radial

decay in density. Furthermore, due to the geometric expansion of the plume, the
~E = −∇φ field points slightly back towards the thruster. The strength of this

field can be estimated by considering typical potential drops and beam radii, Er =

20V/20cm = 100V/m. Considering the primary beam ions, we can see that this

beam merely acts to increase the beam divergence. Assuming the ions were initially

moving in axial-only direction and that a uniform field acts over a distance of 0.5 m,

the induced radial velocity component is vr =
√

2 ∗ 50eV/mXe+ = 8572 m/s, giving

θ = tan−1(vr/vz) = 27◦. A much stronger effect is seen on the CEX ions. Since

these ions can be approximated as initially stationary, they will be accelerated by

potential gradients in the radial direction. Assuming the initial energy is ∼ 0eV ,

Distribution A. Approved for public release; distribution unlimited. 1

the CEX ions exit the plume with W = e∆φ kinetic energy. This effect has been

demonstrated numerous times by experimental measurements with sweeps of energy

analyzer probes showing a clear population of low energy ions at high angles from the

beam centerline[34, 35].

Outside the thruster plume, the charge exchange ions expand into a donut-like

structure commonly known as charge exchange wings. These wings have been stud-

ied extensively by previous researchers, including Roy [36], Wang [37], and Boyd [35].

These expansion of these ions is based on local electrostatic fields and can result in

an ion backflow into regions with no line of sight to the thruster. This introduces

several issues. First, the collection of plasma current by spacecraft components could

lead to a dielectric charging and potentially disastrous arcing. Fortunately, this effect

is generally not pronounced, in fact, since ions will be attracted to negatively charged

surfaces, electric propulsion plumes can in fact reduce the spacecraft potential. How-

ever, directly related to this effect is an impact on instruments. Many space weather

satellites utilize charged particle sensors to study space plasmas and phenomena such

such solar storms and magnetic reconnection. Operation of EP devices used for sta-

tion keeping can modify the local plasma environment around the sensor and lead to

a spurious current collection. Furthermore, CEX plume expansion can also result in

a direct contamination. The Xenon propellant used in typical EP thrusters is not re-

acting, however, impacts of CEX ions could potentially lead to low-energy sputtering

of condensible material. Similarly, condensible materials sputtered from the thruster

can be ionized in the plume and subsequently expanded radially in a manner similar

to the standard CEX expansion. These molecular contaminants can subsequently

polymerize to the surface and form monolayers that reduce transmission of optical

sensors and modify emissive properties of thermal control surfaces[38].

7.2 Draco Plume Simulation Code

Unfortunately, it is difficult if not outright impossible to predict the dynamics of

the backflowing ion plume without performing numerical simulations. Such simula-

tions allow the designer to perform trade studies, and find the optimal location for

sensitive instruments. Quite a large number of numerical codes have been developed

precisely to tackle modeling of EP thruster plumes[37, 39–42].In this work we utilize

an electrostatic particle-in-cell code Draco. Draco was developed in 2005 at Virginia

Tech and was subsequently integrated into the AFRL Coliseum framework[43]. The

author of this dissertation was the primary developer of Draco. An early version of

Distribution A. Approved for public release; distribution unlimited. 2

the code is described in the author’s master’s thesis [44] and also in [45]. The code

has gone through a large number of changes since then, with several improvements of

interest implemented in the course of this dissertation. These new features primarily

tackle numerical issues necessary to make the code more efficient and robust. These

features are described below.

7.2.1 Mesh Splitting

Draco was initially developed as a serial code operating on a strictly Cartesian

mesh x = x0 + i∆x. However, the need to model larger simulation domains dictated

the necessity to incorporate support for parallel processing [46] and non-Cartesian

rectilinear stretched meshes[47]. Mesh stretching allows the user to capture a larger

physical domain without increasing the number of mesh nodes (unknowns) that need

to be solved for and also stored in memory. The latter item also resulted in an addition

of zones to describe the topology in each axial direction. This was necessary since

it would be difficult to describe general simulation set ups using a single stretched

mesh. Often we need to use a fine mesh in a high density region around the thruster,

and an expanding mesh in the low density far plume.

Unfortunately, while the implementation of the multi-zone approach decreased

the number of computational nodes needed to capture a certain region of interest, it

also resulted in an additional overhead on the particle push. The primary strength

of Draco had always been its speed. Particle codes such as Draco utilize a large

number of computational particles to describe the velocity distribution function of

the simulated fluid. At every time step, two sets of interpolations are necessary per

particles. First the particle positions are scattered to the grid to compute the electric

field. The electric field is then interpolated back onto the particles to update their

velocity. The strength of the Cartesian mesh approach is that is that the interpolation

becomes trivial - the cell in which the particle is located is easily inverted from

position, i = (x− x0)/∆x. The cell logical coordinates are also easily obtained from

li = i − int(i). In the initial implementation of the multi-zone approach, the zones

existed as virtual boundaries overlaid over a single computational mesh. The particles

moved in the parent mesh, and in order to compute the logical coordinates, the zone

containing the particle had to be first determined. This was done by looping through

the zones and comparing particle positions to the zone boundaries. This was a highly

inefficient operation as indicated by profiling studies, such as the one shown in Figure

7.1. This plot shows the effect of increasing the number of particles from 200k to

500k (2.5 times) and also of increasing the mesh size 8 fold (2x2x2). Blue bars are

Distribution A. Approved for public release; distribution unlimited. 3

Figure 7.1: Profiling studies from previous version of Draco

for the small mesh size while the red ones are for the larger one. Similarly solid bars

indicate the runs with 200k particles, while the dashed one are for runs with 500k

particles. In this study, the PCG solver was used to obtain the plasma potential.

Reading from left to right, we can seen that functions utilizing the largest amount

of computational time are vcXtoL, SparseVectMult, vcDetermineZone, Scatter,

GatherLocal, and GatherInit. Of these, only one, SparseVectMult is performing

an actual computation. All other functions are responsible for interpolating particle

positions to and from the mesh! The function taking up the disproportionately largest

chunk of computational resources is vcXtoL, which is the function that translates

the physical coordinates into logical ones. This is the step that is supposed to be

trivial for a Cartesian mesh, yet here we see that it is in fact dominating the code

performance. In comparison, the actual particle move implemented in Move is trivial.

As expected, the time is directly proportional to the number of simulation particles

(the matrix-vector multiplication in SparseVectMult on the other hand demonstrates

dependence on mesh size, as expected). The vcDetermineZone function contains

the code searching for the particle zone which was added once multiple zones were

implemented. Increasing the mesh size is mainly demonstrated as a performance hit

in the PCG potential solver. Since most Draco simulations do not use a Poisson

solver, this is a non-issue.

Distribution A. Approved for public release; distribution unlimited. 4

(a) (b)

Figure 7.2: Potential solution obtained for a single and multiple (16) zones

Hence, part of the development effort went into optimizing the code and improving

the code performance. This was achieved by rewriting the internal mesh representa-

tion. Instead of treating the zones as virtual boundaries superimposed over a single

contiguous mesh, the mesh was divided into separate chunks. Each chunk took the

ownership of particles located in it. Since each zone contains only a single mesh

definition, this rewrite completely eliminated the need to search for the containing

zone. It also resulted in an improved memory utilization. It is hard to guarantee

a large contiguous memory block on modern multi-process operating systems. Con-

sider a computer system with 2 Gb of RAM. Now assume that the bottom 300Mb is

used by the operating system. Next, assume the user loads a data analysis program

which allocates the next 600 Mb of RAM. Next, the user opens a text editor that

uses 10 Mb of data. Finally, the user closes the data analysis program, freeing the

600Mb of RAM, and starts a simulation. Assume the simulation uses a mesh with

250 × 250 × 250 nodes and that the size of data stored on each node is 20 doubles

(20*8 bytes). The total memory required to allocate this mesh is 1.19 Gb. Despite

the operating system reporting 1.7Gb of free memory, this allocation request will fail.

The reason is simple - the system lack a single contiguous memory block of this size.

The memory structure in our simple example consists of 300Mb used by O/S, a 600

Mb empty space, 10 Mb block used by the text editor, and finally another empty

1138 MB (1.11 Gb) block. The behavior described in this example is actually fairly

typical and previous experience showed that Draco simulations were typically limited

to about 200 × 200 × 200 nodes, despite the amount of available RAM. By dividing

the mesh into a number of smaller blocks, it is more likely the operating system will

be able to accommodate the allocation requests.

Distribution A. Approved for public release; distribution unlimited. 5

The downside of the zone split is that the some performance gain is lost to trans-

ferring particles across zone boundaries. However, since such a packing / unpacking

operation is also required in the distributed parallel mode, the distributed zone han-

dling approach in fact simplified development and debugging of the parallel code.

Besides changing the way the particles move, the split into individual zones also af-

fected the field solver and mesh properties. A boundary buffer was implemented to

obtain data from neighboring zones. In the case of a processor boundary, the neigh-

bor data is obtained via MPI send/receive commands. The neighbor data is used to

add up properties such as particle densities along zone boundaries, and to compute

potential and electric fields. Figure 7.2 shows potential around an arbitrary test ge-

ometry computed on a mesh segmented into 16 zones, and on a corresponding mesh

consisting of only a single zone. The multi-zone case was in addition run in parallel

with 4 zones per processor. As can be seen from this plot, the two solutions are

identical.

The division of mesh into multiple zones had another benefit for parallel compu-

tations. Previously, due to difference in which zones and processor boundaries were

handled, multi-zone meshes were not supported in parallel. In a parallel run, each

zone was automatically assigned to a new processor. This imposed a severe limita-

tion on the possible domain decomposition. Consider for instance a computer cluster

containing 32 CPUs (CPU counts often come in powers of 2). In order to utilize all

32 CPUs, a 4× 4× 2 domain decomposition is required. Such a zone definition is not

always ideal. The new implementation completely divorces the number of zones and

the number of available CPUs. Zone assignment is now performed in a round-robin

case. In the case of a serial run, all zones are given to the first (and only) processor.

If multiple computers are present, they are assigned zones in a sequential order: zone

0 goes to CPU 0, zone 1 to CPU 1, zone 2 to CPU 2, zone 3 to CPU 0, zone 4

to CPU 1, etc... This example assumes there are 3 CPUs in the simulation space.

Such an assignment results in optimal work balancing for majority of cases. The only

limitation is that for obvious reasons the domain contains at least as many zones as

CPUs.

Finally, it should be noted that parallel communication across an arbitrary number

of processors and zones is a non-trivial task. Care is needed to avoid deadlock, a

situation in which processors keep waiting on each other. This is avoided in the

new Draco by a assigning each face a unique faceID. Communication is performed

by looping over the faceIDs consecutively. Each processor checks if it contains that

particular faceID, and if it does, communication is performed. Additional care is also

Distribution A. Approved for public release; distribution unlimited. 6

needed in the summation of shared data. It is imperative that the summation is

performed one dimension at a time, otherwise, inconsistent values will be obtained

along nodes shared by more than two zone.

7.2.2 Mesh Intersection

Second important change is related Draco’s helper mesh-generation module Vol-

car. While rectilinear meshes speed up particle push and interpolation, they make

it more difficult to capture realistic geometries. In finite-element analysis, the mesh

shape contours to the surface, but in a rectilinear mesh a cut cell approach must

be taken to capture the surface geometry. Draco uses a limited cut-cell approach in

which the surface mesh is used to generate boundaries for particles, but a staircase

representation is used by the potential solver. Volcar is responsible for classifying

nodes as ”internal” (fixed potential, assuming conductive objects) or ”external” (free

space), and also for collecting surface elements in interface volumes to be used for

particle-surface impact checks. Volcar first generates the rectilinear zones accord-

ing to the user domain definition. It then intersects the volume mesh with a surface

mesh describing the geometry. Node location is based on the orientation of the surface

normal vectors, with the vectors pointing into the free space.

The original Virginia Tech version of Draco utilized a hybrid structured/tetrahedral

mesh. Each simulation cell (a brick) was subdivided into 5 tetrahedra (see, for in-

stance, Figure 2 in [45]). The mesh intersection was performed not with the parent

block but with each tet. The motivation for this implementation was that the VT

Draco was coupled with an immersed finite element (IFE) solver that utilized such

a mesh to solve for potential in presence of interface cuts [48]. Unfortunately, the

IFE solver was never fully coupled into Draco, with one of the driving reasons being

software language incompatibility. While Draco was developed in C, the IFE solver

was written in Fortran 90. Not only did this required two sets of compilers, the dif-

ference in memory utilization also dictated the mesh structure to be duplicated in

Draco and in IFE, doubling memory requirements. Finally, it was found that the

IFE solver was not versatile enough for real-life situation. A basic assumption in the

implementation of IFE was that the mesh is fine enough such that each tetrahedron

is cut at most one time. Although it is fairly simple to satisfy this requirement for

academic test cases consisting of bricks and cylinders, it was found that in practice it

was impossible to meet this requirement for CAD-generated geometries. Real world

problems typically contain thin features and sharp edges that will result in multiple

surfaces cutting through a tetrahedron.

Distribution A. Approved for public release; distribution unlimited. 7

Figure 7.3: A typical thin feature resulting in multiple cell/edge cuts. In order to
satisfy the single cut requirement, the wedge would need to be placed as shown by
the dashed form.

For these reasons, the IFE solver was officially removed from Draco distribution

around 2006. However, much of the mesh generation methodology was left in the

code. Most important of these was the fact that Volcar was designed to operate

on a cell-by-cell basis. The code looped through the cells and classified each cell

as internal, external, or interface. Interface cells were those that had a cut passing

through them. Internal and external cells were cells that were completely inside or

outside a solid object. This methodology worked well if the single cut requirement was

met, however again failed to work for real world cases. To illustrate this, consider a cell

containing a thin feature as demonstrated in Figure 7.3. It should be pointed that 2D

representation is used in this and subsequent plots for clarity, however, Volcar operates

in 3D. This cell is no longer interface in the original sense of the definition, since it

does not form an interface between an internal and external region (both left and

right side are in free space). However, marking this cell as external would disregard

the fact the cell contains surfaces that need to be check for particle interactions.

In addition, Volcar uses interface cuts to classify nodes as internal or external.

Situation like the one depicted in Figure 7.3 could in some instances result in an

incorrect node classification if the incorrect surface triangle is used. Node classifica-

tion is performed using the first visible surface with visibility determined by checking

for no other triangle intersecting the ray from the node to the triangle centroid. In

some peculiar instances, due to the cell-based approach, not all surfaces needed to

be checked were captured. Another issue arose when surfaces terminated at a cell

Distribution A. Approved for public release; distribution unlimited. 8

(a) Incorrect classification (b) Correct classification

(c) Floodfill resulting from the incorrect classification

Figure 7.4: This figure shows a typical problem in the earlier version of Volcar. Due to
the cell-based approach, external nodes (shown by open circles) would not fully enclose
the internal (solid) nodes. Then the subsequent floodfill used to classify remaining
unknown (gray) nodes would result in propagation of ”spikes”. Since internal nodes
are used to fix object potential, this error distorted the object shape.

Distribution A. Approved for public release; distribution unlimited. 9

boundary. Consider the example shown in Figure 7.4a. The surface can be seen to

”belong” to cells 1 and 2, however, a single vertex is shared with the neighboring

cells 3 and 4. Often, due to the cell-by-cell approach and numerical imprecisions, the

code would fail to capture the single point located in cells 3 and 4. These cells would

then be marked as completely free of surfaces. Classification of node locations in the

interface cells 1 and 2 would result in the situation depicted in Figure 7.4a. In this

figure solid black markers indicate nodes that have been classified as internal, solid

white markers are external nodes, and gray nodes are ”unknown” nodes that have

not been classified. The unknown nodes are classified by performing a flood fill from

the set near-surface nodes. For this step to work correctly, a clear interface must

exist around all surfaces. A well defined interface has internal and external nodes set

on both sides of the surface, as depicted in Figure 7.4b. The difference is the single

externally marked node one cell away from the shared vertex. In order for this node

to be set, the cells 3 and 4 had to be marked as interface and contain the correct

surface definition. In the absence of this single node being classified, the subsequent

flood fill, assuming filling in the +X direction, will result in the situation depicted

in 7.4c. The internal nodes will propagate to the mesh boundary or until another

previously set node is encountered. Such anomalous ”sticks” were a common plague

of many older Draco simulations.

Resolving this issue required changing the methodology from a cell-centered to

a node-centered approach. Instead of treating a mesh cell as the correct volume to

intersect by the surface, a node-centered control volume (NCV) should be used in-

stead. This approach is plotted in Figure 7.5. In the new implementation, the control

volume extends by one cell in each dimension. This definition guarantees an overlap

between control volumes and reduces the risk of some surfaces not being captured

during particle surface intersection check. Although additional testing remains, this

new implementation seems to have fully mitigated the issues present in previous Draco

simulations.

7.2.3 Time-Dependent Source Model

Hall thrusters are known to be non-steady devices demonstrating a wide range of

fundamentals frequencies [13]. The oscillations most easily observed in numerical and

experimental studies is a prominent low frequency ”breathing mode”. This oscillation

arises from a prey-predator type depletion and repletion of neutrals and ions. In [13]

the frequency range for this type of oscillations is given as 15-22 kHz. Figure 7.6

shows the temporal variation in discharge current from a typical HPHall study of the

Distribution A. Approved for public release; distribution unlimited. 10

Figure 7.5: The two colored squares show the node control volume (NCV) surrounding
each node as well as the overlap between neighboring NCVs. Node classification is
performed using surfaces located in the NCV. The dashed boundary shows the cell
in the +X,+Y and +Z direction. Particle located in this cell are checked for surface
intersections using surfaces located in the NCV (highlighted in yellow).

Princeton Cylindrical Hall thruster. The frequency of the oscillations, as computed

by inverting time differences between several prominent peaks, is seen to be in the 17

to 30 kHz range, indicating that this indeed is the breathing mode.

Draco has been coupled previously coupled with HPHall in order to capture the

details of the ion beam population [49]. This coupling is accomplished by sampling

ions crossing a user defined radial grid line and storing their positions and velocity

components into a file. This file thus gives us a radially-varying discretized velocity

distribution function. In Draco simulations, particles are injected into the domain by

associating source models with surface elements. These surfaces then emit particles

according to the source-specific distribution functions and according to user defined

parameters such as mass flow rate and mean velocity. Standard analytical models

such as the Maxwellian and Lambertian (cosine) distribution do not offer a good

representation of Hall thruster ions. The reasons are twofold. First, flux is not

radially uniform due to a difference in density and velocity as a function of thruster

radius. Secondly, ion beam velocity distribution function is also radially varying and

non-Gaussian due to the self-induced accelerating forces. This starkly contrasts Hall

thrusters from ion thrusters in which a cold ion population is accelerated through

grids with a fixed applied potential gradient.

Distribution A. Approved for public release; distribution unlimited. 11

Figure 7.6: Discharge current from a typical HPHall simulation of the CHT showing
a strong time dependence.

As described in [49], the HPHall source was indeed able to better reproduce the

ion beam population. However, in this previous implementation, no note was paid

to the temporal behavior. Instead, the thruster was assumed to operate in a steady

state, and ions sampled over several breathing mode oscillations were conglomerated.

It is not clear how much importance does the temporal behavior play on plume

dynamics. Due to the relaxing nature of collisions, it is possible that the variations

in the source will actually be dissipated in the plume. To study this behavior in more

detail, the HPHall source was modified to optionally read a time stamp at which the

particle data was sampled. The sampling function in HPHall was also modified to

export the time, given by it*DT, and also the azimuthal velocity, computed in the

code as vθ = ĥ/r, where ĥ is a mass-normalized angular momentum. To reduce the

size of the collected list, a user-specified probability is used to select particles. Since

in HPHall ions have a variable specific weight, the probability that a particle will

be sampled is obtained by comparing the particle weight to a user specified output

weight, nsample = wp/(mXe+ ∗ swsample) + R. Here wp is the particle weight, mXe+ is

the mass of an actual Xenon ion, swsample is the desired specific weight, and R is a

random number used to reduce round off errors.

If the time information is present, the source bins particles into a user specified

number of ∆tb time slots (default is 100). This binning is illustrated in Figure 7.7. At

each call to sample a particle, the source determines the bin containing the current

simulation time, j = int((t − t0)/∆tb). To assure a smooth transition between bins,

particle will be sampled from bin j or j + 1 based on its proximity to the boundary.

More specifically, the cell coordinate f = (t−t0)/∆tb−j∆tb is compared to a random

number R. If f ≤ R, a particle is sampled from bin j, otherwise it sampled from

Distribution A. Approved for public release; distribution unlimited. 12

Figure 7.7: At a time indicated by the triangle, a particle will be sampled randomly
from one the two colored bins, with a stronger preference given to the green bin.

bin j + 1. The sampled particle position ∆z and ∆r form an offset from the source

centroid. The position and the velocity components vr, vθ, and vz are also rotated

through a random angle about the thruster centerline. The math used in the rotation

is described in more detail in [49] and [47].

The time data is optional, and if it is not present, the source will sample particles

from the entire given list. A simple, manually-generated example of input is given

below:

VARIABLES = z r vz vr vt t

ZONE T=HPHALL_XE+

0 0.50 10000 0 0 0

0 0.50 10000 0 0 0

0 0.50 10000 0 0 0

0 0.50 10000 0 0 0

0 0.50 10000 0 0 0

0 0.25 8000 0 0 2e-4

0 0.25 8000 0 0 2e-4

0 0.25 8000 0 0 2e-4

0 0.00 2000 0 0 4e-4

0 0.25 8000 0 0 6e-4

0 0.25 8000 0 0 6e-4

This input shows two important features of the time-variable source. Both po-

sition/velocity and also mass flow rate can be a function of time. The variation in

mass flow is captured automatically by the number of entries for different time slots.

Distribution A. Approved for public release; distribution unlimited. 13

The mass flow rate at a specific time is obtained from ṁj = ṁ0(cj/c̄) where cj is

the number of particles in bin j and ĉ is the average across all bins. ṁ0 is the user

specified mass flow rate that will be generated over the entire sampling period. The

result is that, after sampling over the entire given time range, the source will produce

the defined mass flow rate.

Besides specifying the number of segments and the average mass flow rate, the

source also take two additional parameters specifying the initial time t0 and a cutoff

time tf . The first parameter t0 can be used to shift the place in the input file where

the sampling will begin. This parameter is useful if for instance we are interested

at beginning the particle injection at the peak of discharge current, in which case t0

would be set to the time at which the first peak occurs. The second parameter is

used to set the time in the input file at which the sampling will loop to the beginning.

Typically, the input data to the source will contain HPHall exit plane data over a few

thruster oscillations. However, the plume simulation will be run over a greater time

scale, making it necessary to loop through the input data multiple times. The source

will perform this looping automatically once the simulation time exceeds the sampling

range. However, to avoid anomaly in the plume results, it is necessary to match the

end and start data points. The matching can be performed using several ways, one of

which is by matching the phases in the discharge current. As such, the recommended

procedure is to visualize the discharge current log data from HPHall over the time

range exit plane sampling was performed. As an example, these parameters could

be used to bracket the data in Figure 7.6 between 4 × 10−5 and 9 × 10−5 seconds.

After the Draco simulation completed 5× 105 seconds, the sampling would continue

from the 4 × 10−5 marker. It should be pointed out that in order to capture all

sampled particles, the bin size must be set such that ∆tb ≥ ∆tsim. If these optional

parameters are not specified, no time offset is used and the entire time sequence is

used for sampling.

7.2.4 Quasineutral Potential Fix

Finally, a ”quasi-neutral” switch has been implemented in the Draco Gauss-

Seidel Solver. Implementation in the PCG solver is pending. The switch allows

the use of the Poisson solver on meshes too coarse to solve otherwise. A Poisson

solver will not converge in the cell spacing is significantly larger than the local Debye

length. In the plume core where n ∼ 1017 m−3 and kTe ∼ 5 eV, the Debye length

λD =
√
ε0kTe/ne2 ∼ 5 × 10−5 m. Even with the use of a stretched mesh, it be-

comes computationally infeasible to resolve the Debye length while at the same time

Distribution A. Approved for public release; distribution unlimited. 14

(a) Boltzmann Inversion (b) QN switch

Figure 7.8: Comparison in potential between standard Boltzmann inversion and QN-
switched Poisson solver. The sheath structure around the solar wing is clearly absent
from the inverted solution.

resolving the plume far-field. As such, the plume potential is typically obtained by

assuming quasi-neutrality ne = ni = n and inverting the Boltzmann relationship to

obtain φ = φ0+kTe ln(n/n0). Although this approach is valid in the plume, it has the

serious handicap in that it does not resolve the non-neutral sheath. As such potential

will be correct in the plume, but electric fields surrounding charged objects in the

low-density region will not be included. Resolving these fields is on the other hand

imperative, since they drive the trajectories of the backflowing ions.

The QN switch was implemented to resolve this limitation. It follows the imple-

mentation in Aquila’s field solver, [41]. At the start of each Poisson solver call, the

local Debye length is calculated at each node using the local value of plasma density

and electron temperature. If the node volume is greater than the volume of the Debye

sphere, the node is flagged as Dirichlet and potential is fixed on it from the Boltzmann

inversion. Poisson equation is solved on the remaining nodes. Hence, the potential in

high-density plume is computed directly from the inversion, and the Poisson solver

backfills the low-density sheath-dominated region. The Poisson backfill is performed

using a different set of reference parameters for the Boltzmann electron relationship,

ne = n0 exp((φ−φ0)/kTe) to capture the properties of the ambient plasma. This fea-

ture is demonstrated in Figure 7.8. The first plot shows a potential profile computed

using the standard Boltzmann inversion. The second plot shows the solution using

the QN switch approach. Both of these plots were generated by loading a particle

distribution from a restart file and outputting the initial potential.

Distribution A. Approved for public release; distribution unlimited. 15

To better illustrate the difference, the plume simulation was performed without

including collisions. The potential in the plume is seen to be identical, as expected.

However, the sheath surrounding the negatively charged solar wing is clearly absent

in the Boltzmann inversion solution. As such, the first solver will underpredict the

current collected by the wing. The sheath acts to increase the effective volume from

which ions are extracted and accelerated towards the surface. In the absence of the

sheath, ions are unaware of the existing potential drop until they arrive in a cell

adjacent to the surface.

7.3 Results

We demonstrate the plume modeling step using a hypothetical space weather

satellite. Small Hall thrusters such as teh Princeton CTH may be an attractive

replacement for arcjets commonly used for station keeping. The surface model was

shown previously in Figure 7.8. This generic satellite consists of the bus, a solar panel,

a cluster of two thrusters, and several instrument boxes. The bottom left box on the

exposed face in Figure 7.8 is assumed to contain a space weather instrument designed

to measure the flux of low energy ions. We are interested in determining the extent to

which the Hall thruster will modify the local plasma environment, and the amount of

additional current collected due to the thruster plume backflow (here we are assuming

that this instrument does not contain any additional mass-spectrometers that could

differentiate the heavy thruster ions from the light solar protons). In addition, we are

interested to determine whether the temporal characteristic of the thruster discharge

will be captured by the instrument.

We assume the spacecraft is operating in the GEO environment where the baseline

ambient plasma environment is almost negligible, ni = 5.8×105m−3[3]. For simplicity

we do not consider the large surface potentials that often arise in GEO satellites due

to charging, and set all spacecraft surfaces, including the solar wing, to 0V. The only

exception is the space weather instrument, which is assumed to operate at 50V below

the ambient plasma to repel low-energy electrons. Ion particles are injected using the

data sampled from the thruster simulation corresponding to the discharge current in

Figure 7.6. The QN-switched potential solver is used to obtain the plasma potential.

The reference parameters used were (φ0, n0, kTe0) = 20V, 1017 m−3, and 3 eV in the

beam plasma, and 0V, 5.85 m−3, and 1 eV in the ambient backfill region. Collisions

are modeled with the Monte Carlo Collisions (MCC) approach. Only CEX interaction

were considered in this work. In addition, neutrals were not modeled directly, instead

Distribution A. Approved for public release; distribution unlimited. 16

Figure 7.9: Simulation results showing the surface deposition rate, normalized by
thruster mass flow rate, and the plume density in m−3.

the neutral plume was represented by a fluid projection.

The simulation was let run for 4000 time steps. Total of 2 million particles were

used in the simulation. Such a large number was needed in order to obtain a statisti-

cally significant current in the low-density wake region. Results averaged starting at

the steady-state are shown in Figure 7.9. This figure contains two sets of contours.

The contour levels on the slice through the plume show the ion number densities. The

radial expansion of the plume is clearly evident and so is the increased density near

the negatively charged instrument. The ion density in the vicinity of the instrument

is 5×1013 m−3, a four-order reduction from the plume densities, but an O(8) increase

from the ambient environment.

The contour levels on the surface correspond to the deposition rate, normalized by

the source mass flow rate. As can be seen from this figure, the surface is described by

a very coarse mesh (the spacecraft geometry was generated analytically by combining

basic building blocks since a CAD package was not available). While this coarse

mesh does not provide us with details of the surface collection, it at least allows us

to quantify the collection. We can see that majority of backflow occurs in the region

behind the thruster, which can be expected. The solar wing also collects a fraction

of the backflowing plume. By summing up the exposed faces of the instrument of

interest, we can seen that it receives 0.3% of the emitted flux. It should be noted that

Distribution A. Approved for public release; distribution unlimited. 17

Figure 7.10: Comparison between the simulation particle count at steady state and
the instrument collected current.

in a real system, the collection rate would be significantly lower since the instrument

aperture represents only a small fraction of the total instruments surface area.

Figure 7.10 shows the temporal response. The blue curve plots the total number

of particles in the simulation as a function of time. The count is seen to oscillate

due to the time-dependent source. The purple curve shows the current collected by

the instrument. The temporal behavior is clearly also transferred to the backflowing

plume. However, it appears that the frequency present in the backflowing plume has

doubled from the source frequency, since on average two prominent peaks can be seen

for each peak in the particle count. The physical reason behind this, as well as the

additional detail of the temporal response of the CEX ions remains as future work.

Distribution A. Approved for public release; distribution unlimited. 18

Lubos Brieda

Bibliography

[1] V. Zhurin, H. Kaufman, and R. Robinson, “Physics of closed drift thrusters,”
Plasma Sources Science and Technology, vol. 8, no. R1, 1999.

[2] S. Now, “Pppl hall thruster experiment (htx).” http://htx.pppl.gov.

[3] D. Hastings and H. Garrett, Spacecraft-environment interactions. Cambridge
University Press, Cambridge, UK, 2004.

[4] J. Szabo, Fully Kinetic Numerical Modeling of a Plasma Thruster. PhD thesis,
Massachusetts Institute of Technology, 2001.

[5] M. Hirakawa and Y. Arakawa, “Particle simulation of plasma phenomena in hall
thrusters,” in Proceedings of the 24th International Electric Propulsion Confer-
ence (Moscow), IEPC-95-164, 1995.

[6] Y. Raitses, D. Staack, M. Keidar, and N. J. Fisch, “Electron-wall interaction in
hall thrusters,” Physics of Plasmas, vol. 12, no. 047104, 2005.

[7] A. I. Morozov, Y. V. Esinchuk, G. N. Tilinin, A. Trofimov, Y. A. Sharov, and
G. Y. Shchepkin, “Plasma accelerator with closed electron drift and extended
acceleration zone,” Soviet Physics – Technical Physics, vol. 17, no. 1, 1972.

[8] M. Lampe, G. Joyce, W. Manheimer, and S. P. Slinker, “Quasi-neutral particle
simulation of magnetized plasma discharges: General formalism and application
to ecr discharges,” IEEE Transcations on Plasma Science, vol. 26, no. 6, 1998.

[9] S. Now, “Patience required as aehf 1 recovery begins new mode.” http://

spaceflightnow.com/atlas/av019/101017hct.html.

[10] D. Sydorenko, A. Smolyakov, I. Kaganovich, and Y. Raitses, “Modification of
electron velocity distribution in bounded plasmas by secondary electron emis-
sion,” IEEE Transactions on Plasma Science, vol. 34, no. 3, 2006.

[11] C. Birdsall, “Particle-in-cell charged-particle simulations, plus monte carlo col-
lisions with neutral atoms, pic-mcc,” Plasma Science, IEEE Transactions on,
vol. 19, no. 2, pp. 65–85, 1991.

[12] Wikipedia, “Tridiagonal matrix algorithm,” 2011. http://en.wikipedia.org/

wiki/Tridiagonal_matrix_algorithm.

Distribution A. Approved for public release; distribution unlimited. 19

[13] E. Choueiri, “Plasma oscillations in hall thrusters,” Physics of Plasmas, vol. 8,
p. 1411, 2001.

[14] J. Fox, Advances in Fully-Kinetic PIC Simulations of a Near-Vacuum Hall
Thruster and Other Plasma Systems. PhD thesis, Massachusetts Institute of
Technology, 2007.

[15] J. Boris and R. Lee, “Non-physical self forces in electromagnetic plasma-
simulation algorithms,” in NRL Memorandum Report 2418, pp. 1–10, 1972.

[16] C. Birdsall and A. Langdon, Plasma physics via computer simulation. Institute
of Physics Publishing, 2000.

[17] M. Lieberman and A. Lichtenberg, Principles of plasma discharges and materials
processing. Wiley-interscience, 2005.

[18] A. Dunaevsky, Y. Raitses, and N. Fisch, “Secondary electron emission from
dielectric materials of a hall thruster with segmented electrodes,” Physics of
Plasmas, vol. 10, p. 2574, 2003.

[19] Y. Raitses and N. Fisch, “Parametric investigations of a nonconventional hall
thruster,” Physics of Plasmas, vol. 8, no. 5, 2001.

[20] L. Brieda, M. Keidar, Y. Raitses, and N. Fisch, “Self-consistent calculation of
electron transport in a cylindrical hall thruster,” in 31st International Electric
Propulsion Conference, Ann Arbor, MI, 2009.

[21] Y. Raitses, A. Smirnov, and N. Fisch, “Effects of enhanced cathode electron
emission on hall thruster operation,” Physics of Plasmas, vol. 16, no. 057106,
2009.

[22] A. Smirnov, Y. Raitses, and N. Fisch, “Plasma measurements in a 100 w cylin-
drical hall thruster,” Journal of Applied Physics, vol. 95, no. 5, 2004.

[23] B. Reid and A. Gallimore, “Plasma potential measurements in the discharge of
a 6-kw hall thruster,” in 44th Joint Propulsion Conference, Hartford, CT, 2008.

[24] A. Fruchtman and A. Cohen-Zur, “Plasma lens and plume divergence in the hall
thruster,” Applied Physics Letters, vol. 89, no. 111501, 2006.

[25] M. Keidar and I. I. Beilis, “Sheath and boundary conditions for plasma simula-
tions of a hall thruster discharge with magnetic lenses,” Applied Physics Letters,
vol. 94, no. 191501, 2009.

[26] M. Keidar, I. D. Boyd, and I. I. Beilis, “Plasma flow and plasma-wall transition
in hall thruster channel,” Physics of Plasmas, vol. 8, no. 12, 2001.

[27] M. Keidar and I. D. Boyd, “On the magnetic mirror effect in hall thrusters,”
Applied Physics Letters, vol. 87, no. 121501, 2005.

Distribution A. Approved for public release; distribution unlimited. 20

[28] J. Fife and M. Martinez-Sanchez, “Two-dimensional hybrid particle-in-cell (pic)
modeling of hall thrusters,” in 24th International Electric Propulsion Conference,
Moscow, Russia, pp. 1213–1224, 1995.

[29] F. Parra, E. Ahedo, J. Fife, and M. Martinez-Sanchez, “A two-dimensional hy-
brid model of the hall thruster discharge,” Journal of Applied Physics, vol. 100,
no. 023304, 2006.

[30] E. Ahedo, R. Santos, and F. Parra, “Fulfillment of the kinetic bohm criterion
in a quasineutral particle-in-cell model,” Physics of Plasmas, vol. 17, p. 073507,
2010.

[31] Y. Garnier, V. V., J. F. Roussell, and J. Bernard, “Anomalous conductivity and
secondary electron emission in hall effect thrusters,” Journal of Vacuum Science
and Technology A, vol. 17, p. 3246, 1999.

[32] J. Yim, M. Keidar, and L. Boyd, “A hydrodynamic-based erosion model for hall
thrusters,” in 29th International Electric Propulsion Conference, Princeton, NJ,
2005. IEPC–2005–013.

[33] J. Linnell and A. D. Gallimore, “Internal plasma potential measurements of a
hall thruster using plasma lens focusing,” Physics of Plasmas, vol. 13, no. 103504,
2006.

[34] B. Beal and A. Gallimore, “Energy analysis of a hall thruster cluster,” in 28th
International Electric Propulsion Conference, 2003. IEPC-2003-055.

[35] I. Boyd and R. A. Dressler, “Far field modeling of the plasma plume of a hall
thruster,” Journal of Applied Physics, vol. 92, no. 4, 2002.

[36] R. I. Samanta Roy, Numerical Simulation of Ion Thruster Plume Backflow for
Spacecraft Contamination Assessment. PhD thesis, Massachusetts Institute of
Technology, 1995.

[37] J. Wang, D. Brinza, and M. Young, “Three-dimensional particle simulations of
ion propulsion plasma environment for deep space 1,” Journal of Spacecraft and
Rockets, vol. 38, pp. 433–440, 2001.

[38] A. Tribble, Fundamentals of contamination control. SPIE, 2000.

[39] M. Mandell, V. Davis, D. Cooke, A. Wheelock, and C. Roth, “Nascap-2k space-
craft charging code overview,” IEEE Transactions on Plasma Science, vol. 34,
no. 5, 2006.

[40] M. Tajmar, W. Meissl, J. del Amo, B. Foing, H. Laakso, G. Noci, M. Capacci,
A. Malkki, W. Schmidt, and F. Darnon, “Charge-exchange plasma contamination
on smart-1: First, measurements and model verification,” in 40th AIAA Joint-
Propulsion-Conference, (Fort Lauderdale, FL), 2004.

Distribution A. Approved for public release; distribution unlimited. 21

[41] M. Santi, S. Cheng, M. Celik, M.-S. M., and P. J, “Further development and pre-
liminary results of the aquila hall thruster plume model,” in 39th Joint Propul-
sion Conference, Huntsville, Alabama, 2003.

[42] J. Forest, A. Hilgers, B. Thiébault, L. Eliasson, J. Berthelier, and H. de Fer-
audy, “An open-source spacecraft plasma interaction simulation code picup3d:
tests and validations,” Plasma Science, IEEE Transactions on, vol. 34, no. 5,
pp. 2103–2113, 2006.

[43] M. Gibbons, D. Kirtley, D. VanGilder, and J. Fife, “Flexible three-dimensional
modeling of electric thrusters in vacuum chambers,” in 39th AIAA Joint Propul-
sion Conference, (Huntsville, Al), 2003. AIAA-2003-4872.

[44] L. Brieda, “Development of the DRACO ES-PIC code and fully-kinetic simula-
tion of ion beam neutralization,” Master’s thesis, Virginia Tech, 2005.

[45] L. Brieda, R. Kafafy, J. Pierru, and J. Wang, “Development of the Draco code
for modeling electric propulsion plume interactions,” in Proceedings of the 40th
Joint Propulsion Conference, Fort Laudardale, FL, USA, pp. 1–21, 2004.

[46] J. Pierru, “Development of a parallel electrostatic pic code for modeling electric
propulsion,” Master’s thesis, Virginia Polytechnic Institute and State University,
2005.

[47] R. Spicer, “Validation of the draco particle-in-cell code using busek 200w hall
thruster experimental data,” Master’s thesis, Virginia Polytechnic Institute and
State University, 2007.

[48] R. Kafafy, T. Lin, Y. Lin, and J. Wang, “Three-dimensional immersed finite ele-
ment methods for electric field simulation in composite materials,” International
journal for numerical methods in engineering, vol. 64, no. 7, pp. 940–972, 2005.

[49] M. Nakles, L. Brieda, G. D. Reed, W. A. Hargus, and R. Spicer, “Experimental
and numerical examination of the BHT-200 hall thruster plume,” in 43rd AIAA
Joint Propulsion Conference, Cincinnati, OH, 2007. AIAA-2007-5305.

Distribution A. Approved for public release; distribution unlimited. 22

